Easily reach 100%
coverage in Flutter

Guillaume Bernos - 11 March 2022

Who Am 1?

- Bad Medium articles in 2017
 Creator of the |location package

« Tech Lead at Bam in Paris

» Writing guillaume.bernos.dev on my free time

Overview

1. Coverage? Why should | care?
2. How to make testing easier

3. Architecture your project better thanks to testing

Coverage? Why should | care?

« Coverage is the percentage of - Help you understand edge cases

code you're testing automatically . Help you remove dead code

. |t helps track down bugs
automatically

- A higher coverage often means a
longer time to write tests

Testing helps you understand your code
better

Which percentage should I go for?

|t depends on the constraints and one the aim of the project

. |f the existing codebase does not have a lot of tests, just improving this
number is good

 For fast-paced projects, it can still be useful

Which tool should | use?

» Coverage Gutters in VSCode

 Flutter Coverage

"type": "dart",
"request": "launch",
» Special launch.json snippet azos's (*--coverage’,
"for": ["run-test", "run-test-file"],

"title": "Coverage"

- LCov package i
» Cl Tools

How to make testing easier?

Typical widget test

» You need to inject your theme
- To create a golden

« And to be sure it has been
tested on different sizes if
you're responsive

Create extension
on the teSter extension PumpApp on WidgetTester {

Future<void> pumpApp (
Widget widget, {
Widget Function(BuildContext context, Widget? child)? builder,

1) A
return pumpWidget (

« With the tester.pumpApp, you AppTheme

. data: AppThemeData.main(),
can easily remove a lot of child: Builder
. builder: (context) => MaterialApp(
bOl |erp | ate theme: AppTheme.of (context).materialTheme,
localizationsDelegates: const |
. . . AppLocalizations.delegate,
¢ If you mOdIfy SOmeth'”g In the GlobalMateriallocalizations.delegate,
. .],
root of your app, easily modify i lders builder.
supportedLocales: AppLocalizations.supportedLocales,
your tests

home: widget,

» Should be pretty close to what),
you put In your root) ;

Support different screen
sizes

» You need to change the size of
your screen

- Usually we agree with the
client which screen they want
us to test the app on

- You can change the screen size
easily

const iPhonellMax = ScreenSize(' iPhone 11 Max', 414, 896, 3);

final responsiveVariant = ValueVariant<ScreenSize>({

iPhonellMax,

})i

extension ScreeSizeManager on WidgetTester {
Future<void> setScreenSize(ScreenSize screenSize) async {
return setScreenSize(
width: screenSize.width,
height: screenSize.height,
pixelDensity: screenSize.pixelDensity,
) i
}

Future<void> setScreenSize({
double width = 540,
double height = 960,
double pixelDensity = 1,
}) async {
final size = Size(width, height);
awalit binding.setSurfaceSize(size);
binding.window.physicalSizeTestValue = size;

binding.window.devicePixelRatioTestValue = pixelDensity;

Custom extension for
size

void testResponsiveWidgets(
String description,
WidgetTesterCallback callback, {

Future<void> Function(String sizeName, WidgetTester tester)?

gobdehCaskbpgk,

e YOU Can reuse the test package.Timeout? timeout,

. . bool semanticsEnabled = true,
testResponsiveWidgets to hoo | .
final variant = breakpoints ?? responsiveVariant;
testWidgets (

create goldens according to

. (tester) async {
t h e C u r re nt S I Ze await tester.setScreenSize(variant.currentValue!);
await callback(tester);
if (goldenCallback != null) {
await goldenCallback(variant.currentValue! .name, tester);

}
o
skip: skip,
timeout: timeout,
semanticsEnabled: semanticsEnabled,

variant: responsiveVariant,

) 7

Test your navigation

» Be sure you are redirected at
the right place

« Be sure you are displaying the
right page

Example on GoRouter

« The easiest way is to Mock
GoRouter and inject it to test
the redirection

import 'package:flutter/material.dart’;
import 'package:go router/go router.dart';

import 'package:go router/src/inherited go router.dart';
import 'package:mocktail/mocktail.dart’;
class MockGoRouter extends Mock implements GoRouter {}

class MockGoRouterProvider extends StatelessWidget {
const MockGoRouterProvider ({
required this.goRouter,
required this.child,
Key? key,
}) : super(key: key);

/// The mock navigator used to mock navigation calls.

final MockGoRouter goRouter;

/// The child [Widget] to render.
final Widget child;

@override
Widget build(BuildContext context) => InheritedGoRouter (

goRouter: goRouter,

child: child,
) ;

Example on GoRouter

await tester.pumpWidget (

+ Then you can use it directly in e eekcorosterrovidor

goRouter: mockGoRouter,

your teStS child: ChangeNotifierProvider.value(

value: loginInfo,
child: FamilyScreen(family: Families.data[0]),

) 1
) s

) s
) 7

await tester.tap(find.byType(ListTile).first);
await tester.pumpAndSettle();

verify(() => mockGoRouter.go('/family/fl/person/pl')).called(1l);
verifyNever(() => mockGoRouter.go('/family/fl/person/p2'));

Example on GoRouter

 To test you redirect your user
to the correct place, you need
tO make initiachcatiOn GoRouteznizz:iiiziicji;fBli(i)cl:c;liciazze;(:. c':</>r'1fext, [String? location]) => GoRouter (

routes: |

injectable Goroute

path: '/"',

Architecture your project better
thanks to testing

Which code smell can detect testing?

You need to repeat yourself to test your code
You cannot mock a certain dependency
You need to write a lot of mocks just for one test

You cannot test certain parts of your code

Example with Flutter
Bloc

» You need to create your
blocTest<AppBloc, AppState>(
blOCTeSt 'emits unauthenticated when user is empty',

setUp: () {
when(() => authenticationRepository.user).thenAnswer (
() => Stream.value(User.empty),
) i
b
build: () => AppBloc(

authenticationRepository: authenticationRepository,

) 1
expect: () => const [AppState.unauthenticated()],

)i

Example with Flutter
Bloc

You separate your Ul between
Screen and View

Screen injects your Bloc/Cubit

View is only responsible of
displaying and reacting to
changes

Multiples Widgets are totally
separated from business logic

testWidgets('renders $AppView', (tester) async {

await tester.pumpWidget (
AppScreen (
authenticationRepository: authenticationRepository,
shouldDisplayOnboarding: false,
) 1
) i
await tester.pump();

expect (find.byType (AppView), findsOneWidget);

})i

Example with Flutter
Bloc

You separate your Ul between
Screen and View

Screen injects your Bloc/Cubit

View is only responsible of
displaying and reacting to
changes

Multiples Widgets are totally
separated from business logic

testWidgets('render $AppView states', (tester) async {

await tester.setScreenSize(desktop);

final appBloc = MockAppBloc();

when(() => appBloc.state).thenReturn(
AppInitialState(),

) i

final expectedStates = [AppLoaded()];

whenListen(appBloc, Stream.fromIterable(expectedStates));

await tester.pumpApp
BlocProvider<AccountLegalBloc>.value (
value: appBloc,

child: const AppView(),

) s
) ;

Example with Flutter
Bloc

You separate your Ul between
Screen and View

Screen injects your Bloc/Cubit

View is only responsible of
displaying and reacting to
changes

Multiples Widgets are totally
separated from business logic

testWidgets('render $AppView states', (tester) async {

await tester.setScreenSize(desktop);

final appBloc = MockAppBloc();

when(() => appBloc.state).thenReturn(
AppInitialState(),

) i

final expectedStates = [AppLoaded()];

whenListen(appBloc, Stream.fromIterable(expectedStates));

await tester.pumpApp
BlocProvider<AccountLegalBloc>.value (
value: appBloc,

child: const AppView(),

) s
) ;

100%

Is not required for a project

Thanks for listening!

